首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146114篇
  免费   15028篇
  国内免费   9328篇
电工技术   12017篇
技术理论   4篇
综合类   18626篇
化学工业   15896篇
金属工艺   6437篇
机械仪表   10767篇
建筑科学   18744篇
矿业工程   6895篇
能源动力   4829篇
轻工业   7437篇
水利工程   6921篇
石油天然气   6591篇
武器工业   2048篇
无线电   10280篇
一般工业技术   17822篇
冶金工业   5573篇
原子能技术   2320篇
自动化技术   17263篇
  2024年   271篇
  2023年   1617篇
  2022年   3274篇
  2021年   3842篇
  2020年   4334篇
  2019年   3761篇
  2018年   3572篇
  2017年   4572篇
  2016年   5152篇
  2015年   5393篇
  2014年   8861篇
  2013年   8318篇
  2012年   11384篇
  2011年   11550篇
  2010年   9028篇
  2009年   9237篇
  2008年   8566篇
  2007年   10599篇
  2006年   9311篇
  2005年   7851篇
  2004年   6449篇
  2003年   5540篇
  2002年   4643篇
  2001年   3856篇
  2000年   3337篇
  1999年   2836篇
  1998年   2227篇
  1997年   1964篇
  1996年   1667篇
  1995年   1551篇
  1994年   1312篇
  1993年   961篇
  1992年   841篇
  1991年   587篇
  1990年   490篇
  1989年   488篇
  1988年   351篇
  1987年   195篇
  1986年   163篇
  1985年   74篇
  1984年   74篇
  1983年   37篇
  1982年   45篇
  1981年   57篇
  1980年   29篇
  1979年   37篇
  1978年   17篇
  1977年   14篇
  1975年   16篇
  1959年   30篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
31.
张庆弢  毕超 《中国塑料》2022,36(6):87-91
基于CFD?DEM耦合方法,研究了颗粒在水室内的流动状态,分析了不同刀盘转速、粒子水通入量和水室出口角度对造粒过程的影响,发现提高刀盘转速、增加粒子水通入量和水室出口倾斜一定的角度都有利于水室内颗粒的排出。进一步研究了颗粒与碎屑在水室内的流动,发现在水室出口处二者的流动基本呈现出一定的分离角度。  相似文献   
32.
The oxygen starvation in fuel cells is an important reason for the deterioration of durability. The segmented fuel cell is a method to study the gas distribution inside the fuel cell. In order to study the influence of the grooving method on segmented fuel cell and its application in oxygen starvation diagnosis, a five-serpentine-channel three-dimensional two-phase simulation model is established by FLUENT. Through steady-state simulation, the effect of grooving method on fuel cell performance is studied. The overall performance (polarization curve) of the fuel cell drops slightly, but the current density distribution on the anode graphite plate changes greatly due to the grooves. The “current concentration” phenomenon is proposed based on the current density distribution. Through dynamic simulation, the oxygen starvation under current load mode and voltage load mode is simulated, and the “starvation coefficient” is defined as an oxygen starvation diagnostic index. In the current load mode, the “starvation coefficient” never exceed 15%, because when the oxygen starvation is severe, the simulation cannot converge or even cannot maintain, which corresponds to the voltage reversal in reality. However, in the voltage load mode, the “starvation coefficient” can reach up to 100%. The conclusions have important guiding significance for the judgment of the internal reaction uniformity of the segmented fuel cell by grooving method and provide a theoretical basis for judging whether a fuel cell is out of oxygen by segmented fuel cell.  相似文献   
33.
The objective of this study is to investigate the impact of biomass feeding location on rice husk gasification for hydrogen production. By comparing the results between top-feed and bottom-feed of the feedstock of the fluidized bed biomass gasification at the reaction temperature between 600~1000 °C and ER = 0.2, 0.27, and 0.33 without steam, the optimum low heating value was increase by 2.35 kJ/g-rice husk by the top-feed to gasifier. Although the yield of hydrogen was decreased by 42% for the rice husk gasification by the top-feed operation, the yield of CO, CO2, and CH4 were highly increased, which enhancing the heating value of the effluent gas. The study results suggested the potential route of the biomass gasification at the different feeding location.  相似文献   
34.
南水北调中线总干渠无在线调蓄水库,对藻类生态调度过程中出现的问题开展生态调度实现策略和实施方式研究。主要实现策略包括:划定自身的调蓄区,隔离生态调度对下游的影响;采用高效的渠池运行方式,减少生态调度时蓄量的反复调整;综合考虑安全、快速、平稳等需求,设定生态调度实施进程和方式。具体实施方式包括:将总干渠划分为流速调控区、调蓄区和正常运行区,分别实施等体积、控制蓄量和闸前常水位方式运行;将生态调度过程划分为充水阶段和泄水阶段,基于流速调控目标值、持续时长和水位降幅约束条件,确定各阶段时长和各分区的闸门群调控方案等。基于2018年3月输水工况,采用明渠一维非恒定流模型,仿真总干渠上游15个渠池的藻类生态调度过程。结果表明,生态调度可在3.5 d内完成,各渠池的平均流速由0.48 m/s增至0.93 m/s,持续时间超过2 h。在整个生态调度过程中,水位变化平稳,水位变幅符合安全阈值要求,下游渠道的正常运行未受生态调度明显影响。  相似文献   
35.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
36.
Recovery of hydrogen (H2) from H2-containing gas mixtures has great significance for energy conservation, cost reduction and benefit increase. However, the common separation methods have the ubiquitous problem due to phase equilibrium principle and results in the conflict between H2 concentration and H2 recovery rate in the product gas. Consequently, an innovative conception of hydrate-membrane coupling approach is proposed in this work. In the separation process, hydration and membrane permeation two separation driving forces coexist to achieve the aim of strengthening mass transfer kinetics. H2 and non-H2 components (hydrocarbons) are synchronously and directionally selected by membrane and hydrate to improve different phase compositions. Therefore, the gas in feed side could keep relatively high two separation driving forces (H2 fugacity and hydrocarbons fugacity). The results show that the coupling method could synchronously increase both the concentration and the recovery rate of H2 in the product gas. At the same time, the volume and concentration of the hydrocarbons in hydrate both increases effectively. It indicates that hydrate and membrane separation methods support each other in the separation process. The hydrate-membrane coupling method fundamentally solves the issue of the decreasing driving force resulting from single separation method and phase equilibrium relationship.  相似文献   
37.
The study of shock wave propagation in a detonation chamber is of great importance as a part of the plate forming process. Investigations related to the effects of premixed gas detonation on the deflection of a plate require in-depth examination. An Eulerian-Lagrangian numerical simulation is conducted using the space-time conservation element and solution element method of LS-DYNA software to study the effect of confined multi-point ignited gaseous mixture on the dynamic response of thin plates clamped at the end of a combustion chamber. The FSI couples a Lagrangian finite element solver with a Eulerian fluid solver in a 2D space with detailed chemistry of H2–O2 mixture. The solution contains the detonation wave propagation through the combustion chamber and its interaction with the plate. The influence of variation in the multi-point ignition locations and combustion chamber dimensions on the pressure history and plate deflection is studied. To verify the model, a comparison with the experimental study is carried out using an adjustable model representative of the real experiment. The verified model is used to link the evolution of plate shape with the arrival time and intensity of shock waves within the chamber. It is found that a longer distance between the ignition point and the plate intensifies the ultimate deflection of the plate. In addition, a fairly large combustion area employed in a direction rather than transverse to the plate surface is unable to influence the ultimate deformation of the plate.  相似文献   
38.
In any work system design intervention—for example, a physical workplace re-design, a work process change, or an equipment upgrade—it is often emphasized how important it is to involve stakeholders in the process of analysis and design, to gain their perspectives as input to the development, and ensure their future acceptance of the solution. While the users of an artifact or workplace are most often regarded as being the most important stakeholders in a design intervention, in a work-system context there may be additional influential stakeholders who influence and negotiate the design intervention's outcomes, resource allocation, requirements, and implementation. Literature shows that it is uncommon for empirical ergonomics and human factors (EHF) research to apply and report the use of any structured stakeholder identification method at all, leading to ad-hoc selections of whom to consider important. Conversely, other research fields offer a plethora of stakeholder identification and analysis methods, few of which seem to have been adopted in the EHF context. This article presents the development of a structured method for identification, classification, and qualitative analysis of stakeholders in EHF-related work system design intervention. It describes the method's EHF-related theoretical underpinnings, lessons learned from four use cases, and the incremental development of the method that has resulted in the current method procedure and visualization aids. The method, called Change Agent Infrastructure (abbreviated CHAI), has a mainly macroergonomic purpose, set on increasing the understanding of sociotechnical interactions that create the conditions for work system design intervention, and facilitating participative efforts.  相似文献   
39.
40.
《水科学与水工程》2022,15(1):29-39
In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号